A call for immediate action to increase COVID-19 vaccination uptake to prepare for the third pandemic winter – Nature.com

  • Global Change Data Lab. Coronavirus (COVID-19) Vaccinations. Our world in data https://ourworldindata.org/ (2022).

  • Rees, F. et al. Measuring parents’ readiness to vaccinate themselves and their children against COVID-19. Vaccine 40, 3825–3834 (2022).

    CAS  Google Scholar 

  • Lindholt, M. F., Jørgensen, F., Bor, A. & Petersen, M. B. Public acceptance of COVID-19 vaccines: cross-national evidence on levels and individual-level predictors using observational data. BMJ Open 11, 048172 (2021).

    Google Scholar 

  • Neely, S. R., Eldredge, C., Ersing, R. & Remington, C. Vaccine Hesitancy and Exposure to Misinformation: a Survey Analysis. J. Gen. Intern. Med. 37, 179–187 (2022).

    Google Scholar 

  • Honora, A., Wang, K.-Y. & Chih, W.-H. How does information overload about COVID-19 vaccines influence individuals’ vaccination intentions? The roles of cyberchondria, perceived risk, and vaccine skepticism. Computers Hum. Behav. 130, 107176 (2022).

    Google Scholar 

  • Zarocostas, J. How to fight an infodemic. Lancet 395, 676 (2020).

    CAS  Google Scholar 

  • Hertwig, R. & Wulff, D. U. A description–experience framework of the psychology of risk. Perspect. psychological Sci. 17, 631–651 (2022).

    Google Scholar 

  • Sprengholz, P. & Betsch, C. Previous SARS‐CoV‐2 infection is linked to lower vaccination intentions. J. Med. Virol. 93, 6456–6457 (2021).

    CAS  Google Scholar 

  • Hammerman, A. et al. Effectiveness of the BNT162b2 Vaccine after Recovery from Covid-19. N. Engl. J. Med. 386, 1221–1229 (2022).

    CAS  Google Scholar 

  • Torres, M. N., Barberia, I. & Rodríguez‐Ferreiro, J. Causal illusion as a cognitive basis of pseudoscientific beliefs. Br. J. Psychol. 111, 840–852 (2020).

    Google Scholar 

  • Galanis, P. et al. First COVID-19 Booster Dose in the General Population: A Systematic Review and Meta-Analysis of Willingness and Its Predictors. Vaccines 10, 1097 (2022).

    CAS  Google Scholar 

  • Drew, L. Did COVID vaccine mandates work? What the data say. Nature 607, 22–25 (2022).

    CAS  Google Scholar 

  • Böhm, R. et al. Crowdsourcing interventions to promote uptake of COVID-19 booster vaccines. EClinicalMedicine 53, 101632 (2022).

    Google Scholar 

  • Verger, P. et al. Vaccine hesitancy in health-care providers in Western countries: a narrative review. Expert Rev. Vaccines 1–19 https://doi.org/10.1080/14760584.2022.2056026 (2022).

  • Loomba, S., Figueiredo, A., Piatek, S. J., Graaf, K. & Larson, H. J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 5, 337–348 (2021).

    Google Scholar 

  • Dai, H. et al. Behavioural nudges increase COVID-19 vaccinations. Nature 597, 404–409 (2021).

    CAS  Google Scholar 

  • Batteux, E., Mills, F., Jones, L. F., Symons, C. & Weston, D. The Effectiveness of Interventions for Increasing COVID-19 Vaccine Uptake: A Systematic Review. Vaccines 10, 386 (2022).

    CAS  Google Scholar 

  • Brewer, N. T., Chapman, G. B., Rothman, A. J., Leask, J. & Kempe, A. Increasing vaccination: putting psychological science into action. Psychol. Sci. Public Interest 18, 149–207 (2017).

    Google Scholar 

  • Tentori, K. et al. Nudging COVID-19 Vaccine Uptake by Changing the Default: A Randomized Controlled Trial. Med. Decis. Mak. 42, 837–841 (2022).

    Google Scholar 

  • Chapman, G. B., Li, M., Colby, H. & Yoon, H. Opting In vs Opting Out of Influenza Vaccination. JAMA 304, 43–44 (2010).

    CAS  Google Scholar 

  • Milkman, K. L., Beshears, J., Choi, J. J., Laibson, D. & Madrian, B. C. Using implementation intentions prompts to enhance influenza vaccination rates. PNAS 108, 10415–10420 (2011).

    CAS  Google Scholar 

  • Milkman, K. L. et al. A megastudy of text-based nudges encouraging patients to get vaccinated at an upcoming doctor’s appointment. Proc. Natl. Acad. Sci. U.S.A. 118, e2101165118 (2021).

    CAS  Google Scholar 

  • Omer, S. B., Betsch, C. & Leask, J. Mandate vaccination with care. Nature 571, 469–472 (2019).

    CAS  Google Scholar 

  • Thaler, R. H. & Sunstein, C. R. Nudge: Improving decisions about health, wealth, and happiness. (Penguin, 2009).

  • SeyedAlinaghi, S. et al. Impact of COVID‐19 pandemic on routine vaccination coverage of children and adolescents: A systematic review. Health Sci. Rep. 5, e00516 (2022).

    Google Scholar 

  • Collis, A. et al. Global survey on COVID-19 beliefs, behaviours and norms. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01347-1 (2022).

  • Dubé, E., Gagnon, D. & Vivion, M. Optimizing communication material to address vaccine hesitancy. CCDR 46, 48–52 (2020).

    Google Scholar 

  • Petersen, M. B., Bor, A., Jørgensen, F. & Lindholt, M. F. Transparent communication about negative features of COVID-19 vaccines decreases acceptance but increases trust. Proc. Natl. Acad. Sci. U.S.A. 118, e2024597118 (2021).

    CAS  Google Scholar 

  • Tjaden, J., Haarmann, E. & Savaskan, N. Experimental evidence on improving COVID-19 vaccine outreach among migrant communities on social media. Sci. Rep. 12, 16256 (2022).

    CAS  Google Scholar 

  • Kärki, K. Listening to vaccine refusers. Med. Health Care Philos. 25, 3–9 (2022).

    Google Scholar 

  • Wegwarth, O., Wagner, G. G., Spies, C. & Hertwig, R. Assessment of German public attitudes toward health communications with varying degrees of scientific uncertainty regarding COVID-19. JAMA Netw. Open 3, 2032335–2032335 (2020).

    Google Scholar 

  • Ali, N., Ashiru-Oredope, D. & Murdan, S. Training university students as vaccination champions to promote vaccination in their multiple identities and help address vaccine hesitancy. Pharm. Educ. 21, 407–419 (2021).

    Google Scholar 

  • Tuckerman, J., Kaufman, J. & Danchin, M. Effective Approaches to Combat Vaccine Hesitancy. Pediatr. Infect. Dis. J. 41, e243–e245 (2022).

    Google Scholar 

  • Schmid, P. & Betsch, C. Effective strategies for rebutting science denialism in public discussions. Nat. Hum. Behav. 3, 931–939 (2019).

    Google Scholar 

  • Schmid, P. & Betsch, C. Benefits and pitfalls of debunking interventions to counter mRNA vaccination misinformation during the COVID-19 pandemic. Sci. Commun. 44, 531–558 (2022).

    Google Scholar 

  • Bollyky, T. J. et al. Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021. Lancet 399, 1489–1512 (2022).

    Google Scholar 

  • Bartoš, V., Bauer, M., Cahlíková, J. & Chytilová, J. Communicating doctors’ consensus persistently increases COVID-19 vaccinations. Nature 606, 542–549 (2022).

    Google Scholar 

  • Dixon, G. N. & Clarke, C. E. Heightening Uncertainty Around Certain Science: Media Coverage, False Balance, and the Autism-Vaccine Controversy. Sci. Commun. 35, 358–382 (2013).

    Google Scholar 

  • Dixon, G. & Clarke, C. The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions. Health Educ. Res. 28, 352–359 (2013).

    Google Scholar 

  • Schmid, P., Schwarzer, M. & Betsch, C. Weight-of-Evidence Strategies to Mitigate the Influence of Messages of Science Denialism in Public Discussions. J. Cognit. 3, 36 (2020).

    Google Scholar 

  • Butler, R. & MacDonald, N. E. Diagnosing the determinants of vaccine hesitancy in specific subgroups: The Guide to Tailoring Immunization Programmes (TIP). Vaccine 33, 4176–4179 (2015).

    Google Scholar 

  • Jama, A. et al. Design and implementation of tailored intervention to increase vaccine acceptance in a Somali community in Stockholm, Sweden—based on the Tailoring Immunization Programmes approach. Public Health Pract. 4, 100305 (2022).

    Google Scholar 

  • Musa, S. et al. Tailoring Immunization Programmes: using patient file data to explore vaccination uptake and associated factors. Hum. Vaccines Immunotherapeutics 17, 228–236 (2021).

    Google Scholar 

  • Trifunović, V. et al. Understanding vaccination communication between health workers and parents: a Tailoring Immunization Programmes (TIP) qualitative study in Serbia. Hum. Vaccines Immunotherapeutics 18, 1913962 (2022).

    Google Scholar 

  • Neufeind, J. et al. Barriers and drivers to adult vaccination among family physicians—Insights for tailoring the immunization program in Germany. Vaccine https://doi.org/10.1016/j.vaccine.2020.04.052 (2020).

  • Musa, S. et al. Identifying barriers and drivers to vaccination: A qualitative interview study with health workers in the Federation of Bosnia and Herzegovina. Vaccine 38, 1906–1914 (2020).

    Google Scholar 

  • Gagneur, A. et al. Promoting vaccination in maternity wards—motivational interview technique reduces hesitancy and enhances intention to vaccinate, results from a multicentre non-controlled pre- and post-intervention RCT-nested study, Quebec, March 2014 to February 2015. Euro-. Surveill. 24, 1800641 (2019).

    Google Scholar 

  • Lemaitre, T. et al. Impact of a vaccination promotion intervention using motivational interview techniques on long-term vaccine coverage: the PromoVac strategy. Hum. Vaccines Immunother. 15, 732–739 (2019).

    Google Scholar 

  • Gagneur, A. et al. A postpartum vaccination promotion intervention using motivational interviewing techniques improves short-term vaccine coverage: PromoVac study. BMC Public Health 18, 811 (2018).

    Google Scholar 

  • Gagneur, A. Motivational interviewing: A powerful tool to address vaccine hesitancy. Can. Commun. Dis. Rep. 46, 93–97 (2020).

    Google Scholar 

  • Miller, W. R. & Rollnick, S. Motivational interviewing: helping people change. (Guilford Press, 2013).

  • Hornsey, M. J. & Fielding, K. S. Attitude roots and Jiu Jitsu persuasion: Understanding and overcoming the motivated rejection of science. Am. Psychol. 72, 459–473 (2017).

    Google Scholar 

  • Hornsey, M. J. Why Facts Are Not Enough: Understanding and Managing the Motivated Rejection of Science. Curr. Direct. Psychol. Sci. 29, 583–591 (2020).

    Google Scholar 

  • Hornsey, M. J., Harris, E. & Fielding, K. S. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychol. 37, 307–315 (2018).

    Google Scholar 

  • Fasce, A. et al. (under review). A Taxonomy of Anti-Vaccination Arguments. Systematic Literature Review and Text Modeling.

  • Gagneur, A., Bergeron, J., Gosselin, V., Farrands, A. & Baron, G. A complementary approach to the vaccination promotion continuum: An immunization-specific motivational-interview training for nurses. Vaccine 37, 2748–2756 (2019).

    Google Scholar 

  • Lewandowsky, S., Cook, J. & Lombardi, D. Debunking Handbook 2020. https://doi.org/10.17910/B7.1182 (2020).

  • Paynter, J. et al. Evaluation of a template for countering misinformation—Real-world Autism treatment myth debunking. PLoS ONE 14, e0210746 (2019).

    CAS  Google Scholar 

  • Walter, N., Brooks, J. J., Saucier, C. J. & Suresh, S. Evaluating the Impact of Attempts to Correct Health Misinformation on Social Media: A Meta-Analysis. Health Commun. 36, 1776–1784 (2021).

    Google Scholar 

  • Chan, M. S., Jones, C. R., Hall Jamieson, K. & Albarracín, D. Debunking: A Meta-Analysis of the Psychological Efficacy of Messages Countering Misinformation. Psychol. Sci. 28, 1531–1546 (2017).

    Google Scholar 

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. 117, 11727–11734 (2020).

    CAS  Google Scholar 

  • Abu Abed, O. S. Gene therapy avenues and COVID-19 vaccines. Genes Immun. 22, 120–124 (2021).

    CAS  Google Scholar 

  • Aharon, D. et al. In vitro fertilization and early pregnancy outcomes after coronavirus disease 2019 (COVID-19) vaccination. Obstet. Gynecol. 139, 490–497 (2022).

    CAS  Google Scholar 

  • Morris, R. S. SARS-CoV-2 spike protein seropositivity from vaccination or infection does not cause sterility. Fs Rep. 2, 253–255 (2021).

    Google Scholar 

  • Orvieto, R. et al. Does mRNA SARS-CoV-2 vaccine influence patients’ performance during IVF-ET cycle? Reprod. Biol. Endocrinol. 19, 1–4 (2021).

    Google Scholar 

  • Wesselink, A. K. et al. A prospective cohort study of COVID-19 vaccination, SARS-CoV-2 infection, and fertility. Am. J. Epidemiol. 191, 1383–1395 (2022).

    Google Scholar 

  • Iacobucci, G. Covid-19: No evidence that vaccines can affect fertility, says new guidance. BMJ 372, n509 (2021).

    Google Scholar 

  • Source